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Chapter 1

Introduction
This chapter is only a very general introduction and no questions are asked. XE "electrical resistance"  
Chapter 2

Observation techniques

Q2.1:
What are the two most common techniques to measure waves at sea?

A:
The most common techniques to measure waves at sea are based on either a buoy or a wave pole XE "wave pole" . The buoy measures its own vertical position as a function of time (typically every ½ second) by measuring its own vertical acceleration (to be integrated twice to obtain the vertical position) or by using GPS XE "GPS" . The vertical location of the sea surface along a wave pole XE "pole"  is measured by measuring the change in electronic characteristics along a vertical wire at the sea surface (e.g., electrical resistance XE "electrical resistance" ). 

Q2.2:
What are the two most common techniques to obtain directional wave information based on these techniques?

A:
With a buoy, directional wave information can be obtained by measuring the pitch XE "pitch" -and-roll XE "pitch-and-roll" 

 XE "roll"  of the buoy (with inclinometers) or the yaw XE "yaw" -and-sway XE "sway"  of the buoy (with horizontal accelerometers or GPS) XE "GPS" . With a group   of wave pole XE "wave pole" s (at least three), directional wave information can be obtained by measuring surface slopes (in an array with small horizontal dimensions) or phase differences (in an array with larger dimensions).

Q2.3:
Is it possible to measure the surface profile of individual waves from satellites?

A:

The instruments that are used to measure waves from satellites are the synthetic aperture radar (SAR XE "SAR" ) and the radar altimeter XE "altimeter" . The (synthetic) antenna XE "antenna"  of the SAR is large enough that it can distinguish individual waves. A SAR image therefore shows an image of individual waves (essentially in grey tone) but the transformation to a surface elevation is highly non-linear and has not yet been achieved. The antenna of an altimeter is much smaller than that of a SAR and the foot print at the sea surface is of the order of 1 kilometre in diameter, which is too large to distinguish individual waves (only an average roughness of the sea surface in the foot print can be estimated, from which the significant wave height   can be inferred).

Chapter 3

Description of ocean waves
Q3.1:
A WAVERIDER XE "WAVERIDER"  buoy gives the sea surface elevation as a function of time. How would you estimate the significant wave height   from such a wave record (of 30 minute duration  

  , say)?

A:

One should first determine the zero level of the record (and usually also its linear trend in time) and remove this level (and trend) from the record so as to have a record with zero mean. Then one should identify all individual waves (the surface profile between two consecutive zero down-crossings) and then, for each such wave, the wave height (the difference between the lowest and the highest level per wave). Ranking all these wave heights and taking the mean of the top (i.e., largest) 1/3 wave heights gives an estimate of the significant wave height, usually   indicated as 
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Q3.2:
How is the one-dimensional variance density spectrum defined in terms of the surface elevation and what does it represent?

A:

The one-dimensional variance density spectrum 
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 is defined as 
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 is the amplitude of the wave component 
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 in the wave record, defined as 
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 is the surface elevation as a function of time and 
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 is the duration of the wave record. This spectrum represents the distribution of the variance of the surface elevation over the frequencies. For a stationary, Gaussian process it contains all statistical information of that process.
Q3.3:
 How would you estimate the significant wave height   from a spectrum?

A:

The significant wave height   
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 is readily estimated from a variance density spectrum 
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 of the spectrum: 
[image: image17.wmf]0

0

4

=

m

Hm

, possibly corrected to best approximate 
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Q3.4:
Suppose that the wave spectrum consist of a mix of wind sea and swell. The wind sea part is rather broad (between 0.15 and 1 Hz, with mean frequency 0.2 Hz) and the swell part is rather narrow (between 0.035 and 0.045, with peak frequency 0.04 Hz). If you would be interested in estimating only the swell spectrum from a wave record of this sea condition, it seems enough to have a record of 1 hour duration, sampled once every 10 s. However, if you would do this, you would make a serious error. What would be the character of the error?

A:

The Nyquist frequency of the spectrum that is computed from such a record would be 
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1/(2x10) =0.05 Hz. All energy above this frequency would alias onto the frequencies below this frequency. In other words, in this case, the wind sea spectrum would alias onto the swell spectrum. So, even if you are only interested in the swell, you need to choose the sample rate such that aliasing is acceptable, e.g., twice per second (corresponding to a Nyquist frequency of 1 Hz).
Q3.5:
Suppose that the spectrum of some stationary, Gaussian XE "Gaussian"  process is unimodal XE "unimodal" , with an
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 tail and little or no energy below the peak frequency   of 8 Hz (obviously not wind waves). What should be the duration  

   and the sample interval for a time record of that process to obtain a reasonable estimate of the spectrum of that process?

A:

The duration  

   is determined by the required frequency resolution XE "frequency resolution"  and reliability. If a resolution of 1/10 of the peak frequency   
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 is needed to resolve the low-frequency part of the spectrum, then one segment of the time record should be 1/(0.8Hz)=1.25 s long. If an error of 15%, say, is acceptable, then a quasi-ensemble of 
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=50 such segments is needed (sampling error of the spectral density 
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 is determined by the Nyquist frequency XE "Nyquist frequency"  
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. If an aliasing XE "aliasing"  of 2.5% is permitted, then the relative energy mirrored around the Nyquist frequency is 
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Q3.6:
What is the standard deviation XE "standard deviation"  of the surface elevation if the spectrum of the surface elevation of wind waves is given by 
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=0.2 Hz?

A:

The standard deviation XE "standard deviation"  of the surface elevation is the square root of the variance, which is the integral of the spectrum:  
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. With the values of 
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 provided, the value of this integral ≈ 0.078 m2, so that the standard deviation is 
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 ≈ 0.28 m.

Chapter 4

Statistics
Q4.1:
What is the mean zero-crossing period of a sea state if the spectrum is given by 
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A:

The zero-crossing period is determined with the zero-th and second-order moments of the spectrum:





[image: image48.wmf](

)

(

)

(

)

4

25

0

0

4

24

1

4

2

2

ap

ap

¥¥

-

-

-

-

==

=

òò

peak

f

peak

mEfdfgfdf

gf






[image: image49.wmf](

)

(

)

(

)

4

2252

2

0

4

22

1

2

2

2

ap

ap

¥¥

-

-

-

-

==

=

òò

peak

f

peak

mfEfdfgffdf

gf




With the values of 
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 and 
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 provided, the value of these integrals 
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≈0.00625 m2Hz2 , so the mean zero-crossing period is 
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Q4.2:
For what type of wave conditions can it be shown theoretically that the wave heights should be Rayleigh distributed? Can this distribution be used for other wave conditions?

A:

The first requirement is that the surface elevation can be treated as a Gaussian process, i.e., the waves should behave as linear waves, i.e., they should not be steep and not in shallow water. The second requirement is that the waves are stationary in a statistical sense. This is strictly speaking only approximately true at sea for durations of 15-30 min. The third requirement is that the spectrum of the waves should be narrow, i.e., the waves should be fairly regular, so that each maximum of the surface elevation corresponds to one (up or down) zero-crossing. 



Observations have shown that if the spectrum is not narrow, i.e., the waves are rather irregular, as in a storm, the Rayleigh distribution can still be applied to the wave heights.

Q4.3:
Why is the significant wave height often preferred as characteristic wave height over other characteristic wave heights, such as the mean wave height?

A:

The value of the significant wave height is fairly close to the value of the visually observed wave height. This is not the case for other characteristic wave heights such as the mean wave height. 

Q4.4:
How can the significant wave height be estimated from a variance density spectrum? Show the derivation of this.

A:
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 is the significant wave height and 
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 is the zero-order moment of the variance density spectrum. The definition of the significant wave height indicates that the highest 1/3 of the wave heights should be considered. These wave heights are located in the probability density function of the wave heights 
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. The mean of these wave heights can be determined from the zero and first order moment of this part of the probability density function: 
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. If the wave heights are Rayleigh distributed, then the outcome of this is 
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Q4.5:
The normal stress in a beam of an off-shore platform as a function of time is described as a stationary, Gaussian process. In the design conditions, the spectrum of this stress is uniform between 0.095 Hz and 0.105 Hz and the standard deviation is 10 N/mm2. What is the value of the spectral density in this spectrum and what are its S.I. units? Assume that the mean value of this stress in these conditions is 200 N/mm2, determine the probability that this stress will exceed a critical value of 250 Nm/m2 in a storm of 6 hours duration.

A:

The variance is the standard deviation squared and in this case its value is therefore 100 (N/mm2)2. The spectral density (the variance density), in this case of a uniform spectrum is simply this variance divided by the width of the spectrum (= 0.105 – 0.095 = 0.01 Hz). Its value is therefore 100 / 0.01 = 104 (N/mm2)2/Hz. The probability that a randomly chosen stress value exceeds a critical value 
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 is given (in this case) by a Gaussian distribution but the probability that a randomly chosen maximum stress value exceeds this critical value is given by a Rayleigh distribution (compare with the crest height of a wave). The critical value (250 N/mm2) should be taken relative to the mean value (200 N/mm2), so that the value to be considered is 250 - 200 = 50 N/mm2 (which is 5 times the standard deviation):




   
[image: image65.wmf]2

0

2500

{}expexp

22100

æö

æö

>=-=-=

ç÷

ç÷

èø

èø

cr

max

cr

x

Prxx

mx





         

     
[image: image66.wmf](

)

6

exp12.53.72710

-

=-==

xQ

 



where 
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 is the randomly chosen maximum stress and 
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 is the variance of the stress. The probability that this stress value does not exceed the critical value is given by 
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The probability that the maximum of these maxima in a period of 6 hours does not exceed the critical value 
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 is given by 
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 is the number of maxima. This number can be readily estimated from the mean wave period (0.1 Hz) and the duration of 6 hours: 
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. The probability that it will exceed this value (at least once in the period of 6 hours) is 
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Strictly speaking one should use the mean zero-crossing period in the estimation of 
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but the spectrum is sufficiently narrow that the results is practically the same: 
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Q4.6:
Which three techniques are used to estimate the return period of an extreme value of the significant wave height? What are their characteristics and which of these is preferred and why?

A:

The three techniques are: the Initial Distribution Approach, the Peak-over-Threshold Approach and the Annual Maximum Approach. 



In the Initial Distribution Approach all available data (the significant wave height as a function of time at one location) is used to extrapolate to low probabilities of exceedance using the most credible distribution (usually a Weibull distribution).



In the Peak-over-Threshold Approach only large values of the significant wave height are used (above a certain threshold - usually representing a storm). The extrapolation to low probabilities is done with the Generalised Pareto Distribution.



In the Annual Maximum Approach only the largest value of the significant wave height per year is used. The Generalised Extreme Value distribution or a Gumbel distribution is used to extrapolate to low probabilities.



The preferred technique is the Peak-over-Threshold Approach because it combines theoretical support (the extreme value theory) with a reasonable amount of data. The Initial Distribution Approach lacks theoretical support and the Annual Maximum Approach usually lacks sufficient data.

Q4.7:
What is the essence of the technique to determine the probability of exceedance of an individual wave height in the long term?

A:

The essence is that relevant numbers of the short-term statistics (the number of wave heights above a given level and the total number of wave heights) are estimated as weighted averages over the long term.
Chapter 5

Linear wave theory (1)
Q5.1:
Is the presence of turbulence in the water relevant to the linear theory of water waves? How can turbulence be generated by waves?
A:

The linear wave theory requires that the water motion is rotation free, which is not the case if turbulence is present in the water. Waves in shallow water induce the particles near the bottom to move along the bottom, thus generating turbulence (equivalent to a bottom shear stress). However, this turbulence remains near the bottom due to the oscillatory nature of the particle motion there. The main body of water is therefore free of turbulence in the absence of other sources of turbulence or of initial turbulence (which takes long to dissipate).

Q5.2:
What is represented by the Laplace equation in the linear wave theory?
A:

In the linear wave theory, the Laplace equation represents the conservation of (water) mass under the condition of constant density (equivalent to the continuity equation) in combination with rotation-free motion. The velocity in the original mass balance equation (or continuity equation) has been replaced by the spatial derivatives of the velocity potential function, creating the Laplace equation. 

Q5.3:
Why is the linear wave theory called 'linear'?
A:

It is called "linear” because all terms in the basic equations and boundary conditions higher-than-linear (in terms of particle velocity and therefore amplitude), have been removed.

Q5.4:
Describe in words the boundary conditions in the linear wave theory. Which of these is the 'free wave' condition?
A:
The lateral boundary condition is that the wave is periodic. The surface boundary conditions are that a particle may not leave the water surface (kinematic boundary condition) and that the air pressure at the water surface is constant (dynamic boundary condition; this is the ‘free wave’ condition). At the bottom there is only a kinematic boundary condition: the water particles may not penetrate the (horizontal) bottom. 

Q5.5:
What is a "free" wave and by virtue of which boundary condition is the sinusoidal wave of the linear wave theory a "free” wave?

 A:
A "free" wave in ocean wave theory is a wave that is only affected by gravitation as an external force. In the linear wave theory, the sinusoidal wave is a free wave due to the dynamic surface boundary condition (constant atmospheric pressure; usually taken to be zero; all other possible external forces such as bottom or surface friction by wind are ignored).

Q5.6:
How is the velocity potential function defined and what is its role in the linear wave theory?
A:

The velocity potential function, as used in the linear wave theory, is a function the spatial derivatives of which are the components of the particle velocity. Its role is to find analytical solutions for the Laplace equation for the two-dimensional (vertical) case of the linear wave theory.

Q5.7:
Explain at which moment in the wave period the particle acceleration at half a wavelength beneath the surface in shallow water reaches its maximum under a sinusoidal wave.
A:

The particle motion under a sinusoidal wave in shallow water goes through an ellipse with a horizontal major axis. The horizontal pressure gradient in the water provides the acceleration for the horizontal motion and the vertical pressure gradient similarly provides the acceleration for the vertical motion. In an ellipse the largest acceleration occurs at the smallest radii of motion, ie., at the two extremes of the major axis (in a horizontal direction).  The surface elevation at these moments in time is zero, which for a sinusoidal wave is at times 
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 is the wave period. 
Q5.8:
Compute the wavelength, the phase speed and group velocity of a 12 s harmonic wave in deep water and in 15 m water depth to within a few percent accuracy.

A:

For the deep-water wavelength 
[image: image85.wmf]0
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 the deep-water limit of the dispersion relationship can be used: 
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In 15 m water depth, the approximation of Eckart can be used to estimate the wavelength: 
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, which is the ratio between the group velocity and the phase speed. The group velocity in 15 m water depth for this wave is therefore 
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Q5.9:
Which processes contribute to the propagation of wave energy and which is accounted for in the linear wave theory (and why only this one)?

A:

Wave energy is propagated by bodily transporting kinetic and potential energy with the particle motion and by work done by the wave induced water pressure. In the linear wave theory the transport of kinetic energy is not accounted for, as it is third order in wave amplitude. The transport of potential energy is cancelled by part of the work done by the wave-induced pressure. So, only the remaining part of the work done by the wave-induced pressure (which is second order in amplitude) is accounted for in the linear wave theory. 
Q5.10:
How long does it take a 15 s swell to travel from New Zealand to California (a distance of 10 000 km)?

A:

Wave energy travels at the group velocity, which is half the phase speed in deep water. The Pacific Ocean is deep water, even for a 15 s swell, so we compute the group velocity  from the linear wave theory:



For the deep-water wavelength 
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 the deep-water limit of the dispersion relationship can be used: 
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 23.4  m/s and the group velocity in deep water is half this value 
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Q5.11:
If a 15 s swell, on arrival off the coast of California (deep water) has an amplitude 
[image: image105.wmf]a

 = 1 m, what then is the maximum particle velocity that a diver would experience at the surface and at 20 m depth (from the surface)?

A:

In deep water the orbital velocity at the surface is constant in time and equal to 
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 (full circle in one period 
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) or 0.42 m/s in this case. This speed reduces exponentially with the distance to the surface with the wave number as damping coefficient. To compute the wave number, we need the wavelength, which is 
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 = 351 m in this deep-water case. The wave number 
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 is therefore 0.018 m-1. The reduction factor at 20 m from the surface is consequently 
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0.7 and the orbital velocity is consequently 0.29 m/s.

Q5.12:
How would the presence of oil affect the observation of waves by radar?

A:

Oil generally suppresses the generation of capillary waves and radar is then "blind" to these short waves. Since radar observes wind-generated waves by virtue of these capillary waves riding on top of the longer wind-generated waves, the radar cannot observe wind-generated waves in the presence of oil on the sea surface. 

Chapter 6

Waves in oceanic waters
Q6.1:
The dimensions of a quadrangular lake are 25 km in the down-wind direction and 65 km in the cross-wind direction and the constant water depth is 20 m. A constant wind (wind speed 
[image: image111.wmf]10
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=15 m/s) is blowing across the lake, perpendicular to the (straight) up-wind shore. How would you estimate the significant wave height at the centre of the down-wind shore?
A:

First check whether the lake is small enough to use the power-law versions of the relevant fetch laws (this would make the computations slightly easier). 



In the given situation, the dimensionless fetch would be 
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= 1090; this is a rather short dimensionless fetch so, the power laws may be used (see Fig. 6.3). Whether the lake is wide enough (the up-wind coastline is supposed to be infinitely long), needs also to be verified. Most of the wave energy travels within 450 from the wind direction (the directional width is typically 300 to either side of the wind). The up-wind coastline should therefore be at least 2 * 25 = 50 km long (symmetrical around the forecast location). It is actually 65 km, so, the lake is wide enough.



With the power law for the peak period of Kahma and Calkoen,  
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[image: image114.wmf]10

/3.03

==

%

peak

TgTU

, so 
[image: image115.wmf]4.6

=

peak

T

s. The corresponding wavelength in deep water would be 33.6 m. The water depth is more than half that value, so the lake is deep with respect to the wavelength.  The lake is therefore deep enough that the Kahma and Calkoen fetch laws may be used. With the fetch law for the significant wave height 
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, the dimensionless significant wave height at the prediction point would be 
[image: image117.wmf]2

10

/0.067

==

%

s

HgHU

, so 
[image: image118.wmf]1.54

=

s

H

m (given the uncertainty of such predictions, " a value of about 1.5 m" would be a more realistic statement). 

Q6.2:
What are typical values for the wave steepness for a young sea states and a fully developed sea state in deep water?
A:

Defining the wave steepness as the significant wave height over the peak wavelength (i.e., the wave length of the peak period): 
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, we need to estimate these two wave parameters as a function of dimensionless fetch. Estimating the peak wavelength with the linear wave theory from the peak period gives for the dimensionless wavelength 
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, or, with the coefficients of Kahma and Calkoen 
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 (which shows that the steepness is only weakly dependent on dimensionless fetch). For very short fetches (
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, say), the steepness would be 
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 and for longer fetches (
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, say), the steepness would be 
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. In other words, the steepness of wind-generated waves varies typically between 2.5% (fully developed sea states) and 5% (young sea states). 

Q6.3:
On what grounds did Phillips arrive at a shape of the high-frequency tail of wind generated wave spectra proportional to
[image: image137.wmf]5
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? Is this result still being used?
A:

Phillips assumed that the spectral density at the high frequencies is limited by the process of breaking, which is dominated by gravitation. If the variance density is proportional to gravitational acceleration 
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, then a simple dimensional analysis shows that the variance density should be proportional to 
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. This result is still being used in the widely accepted JONSWAP spectrum.

Q6.4:
The JONSWAP spectrum is often used as a deep-water spectrum. However, it based on observations in the German Bight that is typically only 20 m deep. Should the use of this spectrum therefore not be reserved for shallow water situations?
A:

No. The criterion for deep or shallow water is not so much the absolute value of the water depth but the relative water depth, i.e., relative to the wavelength. The JONSWAP observations were made for wavelengths that are small enough to consider the water during these observations to be deep water.

Q6.5:
What is the difference between a JONSWAP spectrum and a Pierson-Moskowitz spectrum? Which of these spectra should be used for swell?
A:

The differences are:



(a) The shape of the JONSWAP spectrum is more peaked than that of the PM spectrum. 



(b) The integral of the PM spectrum is larger than that of the JONSWAP spectrum (the corresponding significant wave height of the PM spectrum is therefore also larger than that of the JONSWAP spectrum).



(c) The JONSWAP spectrum should be used for young sea states and the PM spectrum for fully developed sea states. 



Neither of these spectra can be used for swell since the spectrum of swell depends entirely on the history of the generation and propagation of the swell. Any correspondence with the PM spectrum or the JONSWAP spectrum is therefore accidental.

Q6.6:
What is swell and why is it always regular and long-crested?
A:

Swell is the wave field that travels from a storm to some distant point in the ocean. It is always regular because of frequency dispersion (the filtering of the frequencies due to longitudinal spreading). It is always long-crested because of direction dispersion (the filtering of the directions due to the lateral spreading of the waves).

Q6.7:
Why is the JONSWAP spectrum so widely accepted as the universal spectrum for wind-generated waves?
A:

This spectrum is the result of generation by wind, dissipation by white-capping and quadruplet wave-wave interactions in deep water. The quadruplet wave-wave interactions tend to force the spectrum into the JONSWAP shape, provided that the waves are steep enough (which is always the case in a storm) and in deep water. 

Q6.8:
How wide (in direction) is the spectrum of swell that was generated in a storm of 200 km diameter at a distance of 1500 km?
A:

The angle of view to the generating area is arctan(200/1500) ≈ 7.60, which is then also the directional width (= twice the half-power width) of the swell spectrum.

Chapter 7

Linear wave theory (2)
Q7.1:
What would the wave height be of a 10 s harmonic wave travelling without dissipation in a direction normal to a straight beach (parallel bottom contours) from deep water (wave height of 2.50 m) into 10 m water depth? and in 5 m and in 2 m water depth?
A:

For this answer we need to calculate group velocities. The group velocity in deep water is half the phase velocity: 
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For 10 m water we can use the Fenton approximation. The wave number is then 
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 m-1 to find the wavelength – it is 92.3 m. With the corresponding phase velocity (
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, we find the group velocity then to be 
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m/s. The wave height ratio (shoaling coefficient) is consequently 
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. With an incident wave height of 2.5 m, the wave height at 10 m water depth will be 2.46 m. In 5 m water depth the shoaling coefficient is 1.11 and the wave height accordingly would be 2.78 m. In 2 m water depth, the numbers are 1.35 and 3.39 m. This wave height is too large for 2 m depth and the wave will break. If the wave height is 0.8*local depth, the wave height will reduce to this value of 1.6 m.
 Q7.2:
Consider the same situation as in the previous question. How large would roughly be the set-up at the water line (assume the ratio 
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 of wave height 
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 over water depth 
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A:

To compute the set-up we first need to compute the wave height at the point of incipient breaking, i.e., the largest water depth where 
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. Some iteration with the above shoaling computation shows that this is the case at a depth of 3.70 m (
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2.96 m). The total set-up (set-down plus set-up) at the water line is then 
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Q7.3:
Suppose that a long sand bar parallel to the coast is located at some distance from the same coast. The cross section of the sand bar is a trapezoid with an upward slope of 1:50, a flat, horizontal top at 0.7 m below still-water-level and a downward slope of 1:50. What will be the set-up over the top of this sand bar (assume the same incident wave as above and take the ratio of wave height 
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 over water depth 
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A:

For the set-up we cannot use the simple expression 
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 because that applies only to the total set-up at the water line (and there is no water line over the shoal). Instead we need to first consider the set-down at the point of incipient breaking and then the set-up from that point onwards. The set-down will be 
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 at the point of incipient breaking. Using the result of the previous question (
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m. Then we consider the slope of the mean surface from this point onwards to the top of the shoal: 
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0.194.  Since 
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 and the bottom slope is 0.02 and therefore  
[image: image163.wmf]0.02

=-

dd

dx

, the slope of the set-up is 
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. The difference in depth between the point of incipient breaking (3.70 m; see above) and the top of the sand bar is then 3.70 – 0.70 = 3.00 m, so the distance between these two points (with a bottom slope of 1:50) is 150 m. With a slope in the set-up of 0.00387, this gives a set-up of 0.58 m. The total set-up over the sandbar is therefore -0.15 + 0.58 = 0.43 m. The total water depth over the shoal will therefore be 0.70 + 0.43 = 1.13 m (and the local wave height = 0.8*1.13=0.91m).
Q7.4:
What is the set-up at the beach now (still assuming 
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A:

In the absence of further dissipation (nor very realistic), the wave height over the sand bar remains at 0.8*1.13=0.91m. After travelling through deeper water behind the sand bar, the wave breaks again near the beach in 1.13 m water depth (the same water depth as at the top of the sand bar). The total set-up at the water line on the beach now is 
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 relative to the mean water level, which has been raised by 0.43 m by the set-up over the sand bar (and is constant a2 fter the sand bar). So the total set-up at the beach is 0.43 + 0.23 = 0.66 m at the water line on the beach.

Q7.5:
What would be the wave height when a 10 s harmonic wave with a wave height of 1.50 m in deep water from a direction of 600 relative to a straight beach (parallel bottom contours; if the beach is oriented N-S, the waves approach from a WSW-erly direction) travels without dissipation into 10 m water depth and in 5 m and 3 m water depth? Assume the ratio of wave height 
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 over water depth 
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A:
The wave height can be computed from the refraction coefficient and the shoaling coefficient. 
To determine the wave direction in 10 m water depth (to compute the refraction coefficient), Snel's Law can be used (use Eckart’s approximation to calculate wave length and then phase speed): first calculate the direction at 10 m water depth: 
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 (the angle between the wave direction and the normal to the coastline should be taken!), so 
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 relative to the normal to the coast, or, 
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 relative to the coastline itself. The value of the refraction coefficient 
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is 0.954. In combination with the shoaling coefficient (=1.354), the wave height in 10 m water depth is then 1.50*0.954*1.354 = 1.94 m (needs no correction for breaking as this is less than 0.7 x depth= 7 m). 
In 5 m water depth the direction, shoaling and refraction coefficients are 130, 1.55 and 0.942 respectively, so the wave height is 2.19 m (again, needs no correction for breaking as this is less than 0.7 x depth = 3.5 m). 
In 3 m water depth, the numbers are 100, 1.73, 0.94 and 2.44 m respectively. However, the value for the wave height now needs a very slight correction for breaking, as it is higher than 0.7 x depth = 2.1 m. The wave height is therefore 0.7 x 3 = 2.1 m.

Q7.6:
If the water depth is constant beyond the 3 m depth contour depth and the wave continues propagating without dissipation into an area behind a long, thin breakwater oriented parallel to the coast, what then would be the wave height behind the breakwater at a position 50 m from the tip of the breakwater in the incident wave direction and 75 m in the lateral direction?

A:

Using Eckart’s approximation we find that the wavelength of the wave in 3 m water depth is 54 m. The position is therefore about 1 wavelength in the forward direction and 1.5 wavelengths in the lateral direction from the tip of the breakwater. For normal incidence (angle of incidence is 00), Fig. 7.13 shows at that position a value of 0.2 (approximately) of the diffraction coefficient. The wave height would therefore be 0.2 x 2.10 = 0.24 m (normal incidence). However, the direction of incidence is not normal. In 5 m water depth it is 130 (see question 7.5) and in 3 m water depth it is 100.  In constant water depth, no refraction occurs and the angle of incidence remains at 100. So, the diffraction pattern of Fig. 7.13 needs to be rotated accordingly counter clockwise around the tip of the breakwater (keep the breakwater and the wave direction in the figure as they are). The diffraction coefficient at the relevant position would then be approximately 0.185 and the wave height would consequently be 0.185 x 2.10 = 0.39 m. Note that this is a rather hypothetical situation with a harmonic wave. For real random, short-crested waves, the diffraction coefficient would be somewhat higher (the diffraction pattern would be smoother spatially, reducing the high values of the diffraction coefficients and raising the lower values such as 0.185).

Chapter 8

Waves in coastal waters
Q8.1:
What is the value of the ratio of significant wave height over depth for fully developed waves in shallow water?
A:

The formulation of the idealised wave growth curve of Young and Verhagen for the significant wave height in Note 8B, reduces for fully developed conditions (
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), in shallow water (
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. With the values provided in that Note, this gives 
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 would range from 0.01 to 0.02, say and the requested ratio consequently would range from 0.65 downwards to 0.50.

Q8.2:
Give the physical interpretation of the evolution of the TMA spectrum as it moves from deep water into shallow water (assume that the value of the proportionality coefficient in the formulation of that spectrum is constant).
A:

The expression of the TMA spectrum can be simplified to that of Eq. (8.3.6): 
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. The significant wave height is then 
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. The wave steepness for a constant value of 
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, using the peak wavelength as characteristic wavelength, would be 
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, independent of the peak wave number. In other words, even as the waves grow shorter (to maintain a more-or-less constant peak frequency – and thus change the peak wave number), they loose energy at the low frequencies to maintain constant wave steepness in shallow water.

Q8.3:
How are shoaling, refraction and diffraction represented in the energy balance of the waves in shallow water?
A:

Shoaling is represented in the energy balance equation by the group velocity in the terms representing energy propagation in physical x,y-space. In shallow water (or better stated: in water of arbitrary depth), this velocity depends on water depth. Refraction is represented by a separate propagation term to transport energy (action) in spectral direction space. If a proper expression (in terms of the energy- or action density) were available, diffraction would appear as a supplement to the expressions for the group velocity and the refraction-related turning speed. Such expression is not available but an experimental approximation is being used in this manner. 
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